56 research outputs found

    Inference-based statistical network analysis uncovers star-like brain functional architectures for internalizing psychopathology in children

    Full text link
    To improve the statistical power for imaging biomarker detection, we propose a latent variable-based statistical network analysis (LatentSNA) that combines brain functional connectivity with internalizing psychopathology, implementing network science in a generative statistical process to preserve the neurologically meaningful network topology in the adolescents and children population. The developed inference-focused generative Bayesian framework (1) addresses the lack of power and inflated Type II errors in current analytic approaches when detecting imaging biomarkers, (2) allows unbiased estimation of biomarkers' influence on behavior variants, (3) quantifies the uncertainty and evaluates the likelihood of the estimated biomarker effects against chance and (4) ultimately improves brain-behavior prediction in novel samples and the clinical utilities of neuroimaging findings. We collectively model multi-state functional networks with multivariate internalizing profiles for 5,000 to 7,000 children in the Adolescent Brain Cognitive Development (ABCD) study with sufficiently accurate prediction of both children internalizing traits and functional connectivity, and substantially improved our ability to explain the individual internalizing differences compared with current approaches. We successfully uncover large, coherent star-like brain functional architectures associated with children's internalizing psychopathology across multiple functional systems and establish them as unique fingerprints for childhood internalization

    Non-neutralizing antibodies to SARS-Cov-2-related linear epitopes induce psychotic-like behavior in mice

    Get PDF
    ObjectiveAn increasing number of studies have reported that numerous patients with coronavirus disease 2019 (COVID-19) and vaccinated individuals have developed central nervous system (CNS) symptoms, and that most of the antibodies in their sera have no virus-neutralizing ability. We tested the hypothesis that non-neutralizing anti-S1-111 IgG induced by the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could negatively affect the CNS.MethodsAfter 14-day acclimation, the grouped ApoE-/- mice were immunized four times (day 0, day 7, day 14, day 28) with different spike-protein-derived peptides (coupled with KLH) or KLH via subcutaneous injection. Antibody level, state of glial cells, gene expression, prepulse inhibition, locomotor activity, and spatial working memory were assessed from day 21.ResultsAn increased level of anti-S1-111 IgG was measured in their sera and brain homogenate after the immunization. Crucially, anti-S1-111 IgG increased the density of microglia, activated microglia, and astrocytes in the hippocampus, and we observed a psychomotor-like behavioral phenotype with defective sensorimotor gating and impaired spontaneity among S1-111-immunized mice. Transcriptome profiling showed that up-regulated genes in S1-111-immunized mice were mainly associated with synaptic plasticity and mental disorders.DiscussionOur results show that the non-neutralizing antibody anti-S1-111 IgG induced by the spike protein caused a series of psychotic-like changes in model mice by activating glial cells and modulating synaptic plasticity. Preventing the production of anti-S1-111 IgG (or other non-neutralizing antibodies) may be a potential strategy to reduce CNS manifestations in COVID-19 patients and vaccinated individuals

    Low Serum Magnesium Level Is Associated with Microalbuminuria in Chinese Diabetic Patients

    Get PDF
    Whether serum magnesium deficiency is independently associated with the prevalence of microalbuminuria is still unclear. The objective of the present study was to elucidate the association between serum magnesium and microalbuminuria in diabetic patients. A cross-sectional study was conducted in 1829 diabetic subjects (aged ≥ 40 years) from Shanghai, China. Subjects were divided into three groups according to serum magnesium tertiles. A first-voided early-morning spot urine sample was obtained for urinary albumin-creatinine ratio (UACR) measurement. Microalbuminuria was defined as 30 mg/g ≤ UACR < 300 mg/g. Overall, 208 (11.37%) of the study population had microalbuminuria, with similar proportions in both genders (). The prevalence of microalbuminuria in tertile 1 of serum magnesium was higher than the prevalence in tertile 2 and tertile 3 (15.98%, 9.72%, and 8.46%, resp.; for trend <0.0001). After adjustment for age, sex, BMI, blood pressure, lipidaemic profile, HbA1c, eGFR, history of cardiovascular disease, HOMA-IR, antihypertensive and antidiabetic medication, and diabetes duration, we found that, compared with the subjects in tertile 3 of serum magnesium, those in tertile 1 had 1.85 times more likeliness to have microalbuminuria. We concluded that low serum magnesium level was significantly associated with the prevalence of microalbuminuria in middle-aged and elderly Chinese

    Intersecting distributed networks support convergent linguistic functioning across different languages in bilinguals

    Get PDF
    How bilingual brains accomplish the processing of more than one language has been widely investigated by neuroimaging studies. The assimilation-accommodation hypothesis holds that both the same brain neural networks supporting the native language and additional new neural networks are utilized to implement second language processing. However, whether and how this hypothesis applies at the finer-grained levels of both brain anatomical organization and linguistic functions remains unknown. To address this issue, we scanned Chinese-English bilinguals during an implicit reading task involving Chinese words, English words and Chinese pinyin. We observed broad brain cortical regions wherein interdigitated distributed neural populations supported the same cognitive components of different languages. Although spatially separate, regions including the opercular and triangular parts of the inferior frontal gyrus, temporal pole, superior and middle temporal gyrus, precentral gyrus and supplementary motor areas were found to perform the same linguistic functions across languages, indicating regional-level functional assimilation supported by voxel-wise anatomical accommodation. Taken together, the findings not only verify the functional independence of neural representations of different languages, but show co-representation organization of both languages in most language regions, revealing linguistic-feature specific accommodation and assimilation between first and second languages

    An Improved Droop Control Strategy for Grid-Connected Inverter Applied in Grid Voltage Inter-Harmonics and Fundamental Frequency Fluctuation

    No full text
    This paper presents a current suppression method based on a droop control strategy under distorted grid voltage with inter-harmonics and fundamental frequency fluctuation. In this proposed strategy, the current incomplete derivation controller is employed to decrease the negative impact caused by harmonic and inter-harmonic grid voltage. This method provides a good dynamic response and has low complexity against the inter-harmonics with unfixed fundamental frequency. Based on a mathematical model of the grid-connected inverter, we designed novel instantaneous frequency detection and feed-forward methods to suppress the grid fundamental frequency fluctuation impacts. Then the main parameters were analyzed. The simulation and experimental results verified the feasibility and effectiveness of the proposed method

    Low Mismatch Rate between Double-Stranded RNA and Target mRNA Does Not Affect RNA Interference Efficiency in Colorado Potato Beetle

    No full text
    RNA interference (RNAi)-based technology has been proven as a novel approach for insect pest control. However, whether insects could evolve resistance to RNAi and the underlying mechanism is largely unknown. The target gene mutations were thought to be one of the potential ways to develop the resistance. Here we predicted the effective siRNA candidates that could be derived from dsRNA against the Colorado potato beetle (CPB) &beta;-Actin gene (dsACT). By site-directed mutagenesis, we synthesized the dsRNAs with the defect in generation of effective siRNAs (and thus were supposed to have comparable low RNAi efficacy). We showed that, with mismatches to the target gene, all the dsRNA variants caused similar levels of silencing of target gene, mortality and larval growth retardation of CPB. Our results suggest that when the mismatch rate of dsACT and target &beta;-Actin mRNA is less than 3%, the RNAi efficiency is not impaired in CPB, which might imply the low possibility of RNAi resistance evolving through the sequence mismatches between dsRNA and the target gene
    • …
    corecore